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Sonic Boom Prediction
• Near field

– Highly nonlinear

• Mid field
– Shocks coalesce

• Far field
– Geometrical Acoustics, Whitham’s rule

• Euler equations used in near field
– Signals quickly degrade without grid refinement

• Far field methods applied to nonlinear region
• Goal of output adaptation to extend Euler use

– Ensure accuracy
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Output-Based Adaptation
• Mathematically rigorous approach involving the 

adjoint solution that reduces dependence on initial 
grid quality

• Uniformly reducing discretization error is not ideal 
from engineering standpoint, some errors are more 
important to outputs (i.e., drag, boom)

Boom AdaptationDrag Adaptation
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Output Function: “Sensor”
• Integral of pressure deviation squared on a cylinder
• Trimmed to model span and location of wind tunnel 

data (avoids resolution of sting closure)
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Output Adaptation for Sonic Boom
• Surface pressure integral
• Adaptation is targeted to improve this integral

Flow Solution Adjoint Solution
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Recent Progress FUN3D
• Output-adaptive tetrahedral cut-cell scheme

– Permits truly automated anisotropic adaptation
• Anisotropic body-fitted adaptation on curved boundaries limited 

application of output adaptation
– No a priori knowledge of shock locations
– Reduces grid generation task to a geometry surface grid
– Similar to the CART3D Cartesian cut-cell scheme

• Heuristic reconstruction limiter
– Standard limiters can cause flow and adjoint solver 

instabilities
– Smooth convergence for flow and adjoint solvers
– Jeff White (Hypersonic FAP)

• http://fun3d.larc.nasa.gov
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Cut-Cell Method
• Background volume grid
• Surface grid of geometry

– Boolean subtracted from median dual background grid
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Background Grid
• Coarse structured grid subdivided into tetrahedra
• Adapted to reduce the uncertainty in a pressure 

integral at the “sensor” location
– Desired grid size is specified by adjoint error estimate
– Desired anisotropy is specified by Mach Hessian

No a priori shock alignment
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Validation Cases
• Axi-symmetric geometries

– 6.48 Degree Cone-Cylinder 
• NASA TM X-2219 (1971) Model I

– Parabolic Body of Revolution 
• NASA TN D-3106 (1965) Model 4: r(x1/2)

– Quartic Body of Revolution
• NASA TN D-3106 (1965) Model 5: r(x1/4)

• Wing-Bodies
– 69 Degree Swept Delta Wing Body

• NASA TN D-7160 (1973) Model 4
– Ames Low Boom Wing Tail with 4 Nacelles

• NASA CP-1999-209699 (1999) LBWT-4
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Axi-Symmetric Body Geometries
• Octave (MATLAB) script to convert r(x) to a 

triangulation of a body of revolution
– Uniform circumfrential spacing (2-4 degrees)
– Equally distribute slope errors or aspect ratio
– 75 thousand triangles (25 thousand for Cone-Cylinder)

• Cylindrical sting (3 body lengths) closed with aft 
pointing cone (1 body length)
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Axi-Symmetric Bodies
• Longest propagation distances (10 body length)

– Ensure sufficient iterative convergence

• Quartic Body has a significant shock stand-off 
distance required a less aggressive CFL schedule for 
initial transients during impulsive start

Quartic Body of Revolution
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6.48 Degree Cone Cylinder, 1.68 Mach, h/l=10

dp/pinf

h/l
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6.48 Degree Cone Cylinder, 1.68 Mach, h/l=10
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6.48 Degree Cone Cylinder, 1.68 Mach, h/l=10

24 x 3.6 GHz Intel P4 with GigEthernet
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Designer Trades Accuracy for Resources

Signal with Accuracy
Estimates

Resources
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69 Degree Delta Wing Body, 1.68 Mach, 0.15 CN

• Vortex and circumferential geometry discontinuties
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69 Degree Delta Wing Body, 1.68 Mach, 0.15 CN

dp/pinf

h/l
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69 Degree Delta Wing Body 1.68 Mach 0.15 CN

dp/pinf

h/l
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Ames Low Boom Wing Tail, 2.0 Mach, 2.0 AoA
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Ames Low Boom Wing Tail, 2.0 Mach, 2.0 AoA
• LBWT has aft-facing surface normal modeled with a 

transpiration boundary condition to prevent 
unphysical expansion

• Unintended geometry discontinuities are resolved
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Ames Low Boom Wing Tail, 2.0 Mach, 2.0 AoA
• Tail, fuselage, and sting have complex shock-shock 

interaction with wings and nacelles 
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Ames Low Boom Wing Tail, 2.0 Mach, 2.0 AoA
• Adaptation aligns grid to complex shock-shock 

interaction topologies
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Simulation Inputs
• Surface triangulation to resolve geometry
• Dimensions of background grid
• Position of sensor surface
• Mach and angle of attack
• CFL number schedule
• Iterative convergence criteria (max residual reduction 

or iteration)
• Number of processors
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Case Statistics
Case Total time Adaptations Final flow 

solve
Final size

6.48 Cone- 
Cylinder

12 hr 18 74 min 7.1 million CV

Parabolic 
BoR

14 hr 22 38 min 1.5 million CV

Quartic 
BoR

14 hr 27 31 min 1.1 million CV

69 Degree 
Delta Wing

12 hr 21 90 min 6.7 million CV

LBWT 12 hr 19 30 min 6.9 million CV
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Summary
• Adjoint provides output sensitivities

– Automated output-based adaptation
– Enables design

• Robust output adaptation cut-cell approach predicts 
wind tunnel measurements
– Tetrahedral background grids
– Automated after geometry surface triangulation
– No a priori shock knowledge used for initial grid generation
– Five cases performed in 2 work days
– Iterative convergence is important for long propagation 

distances, complicated by detached bow shocks

• More info: http://fun3d.larc.nasa.gov
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