

Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Propagation

Mike Park and Eric Nielsen

Fundamental Aeronautics 2008 Annual Meeting

Atlanta, GA Oct 6, 2008

Near Field

Mid Field

Far Field

Sonic Boom Prediction

- Near field
 - Highly nonlinear
- Mid field
 - Shocks coalesce
- Far field
 - Geometrical Acoustics, Whitham's rule
- Euler equations used in near field
 - Signals quickly degrade without grid refinement
- Far field methods applied to nonlinear region
- Goal of output adaptation to extend Euler use
 - Ensure accuracy

Output-Based Adaptation

- Mathematically rigorous approach involving the adjoint solution that reduces dependence on initial grid quality
- Uniformly reducing discretization error is not ideal from engineering standpoint, some errors are more important to outputs (i.e., drag, boom)

Output Function: "Sensor"

- Integral of pressure deviation squared on a cylinder
- Trimmed to model span and location of wind tunnel data (avoids resolution of sting closure)

Output Adaptation for Sonic Boom

- Surface pressure integral
- Adaptation is targeted to improve this integral

Adjoint Solution

Recent Progress FUN3D

- Output-adaptive tetrahedral cut-cell scheme
 - Permits truly automated anisotropic adaptation
 - Anisotropic body-fitted adaptation on curved boundaries limited application of output adaptation
 - No a priori knowledge of shock locations
 - Reduces grid generation task to a geometry surface grid
 - Similar to the CART3D Cartesian cut-cell scheme
- Heuristic reconstruction limiter
 - Standard limiters can cause flow and adjoint solver instabilities
 - Smooth convergence for flow and adjoint solvers
 - Jeff White (Hypersonic FAP)
- http://fun3d.larc.nasa.gov

Cut-Cell Method

- Background volume grid
- Surface grid of geometry
 - Boolean subtracted from median dual background grid

Background Grid

- Coarse structured grid subdivided into tetrahedra
- Adapted to reduce the uncertainty in a pressure integral at the "sensor" location
 - Desired grid size is specified by adjoint error estimate
 - Desired anisotropy is specified by Mach Hessian

Validation Cases

- Axi-symmetric geometries
 - 6.48 Degree Cone-Cylinder
 - NASA TM X-2219 (1971) Model I
 - Parabolic Body of Revolution
 - NASA TN D-3106 (1965) Model 4: r(x^{1/2})
 - Quartic Body of Revolution
 - NASA TN D-3106 (1965) Model 5: r(x^{1/4})
- Wing-Bodies
 - 69 Degree Swept Delta Wing Body
 - NASA TN D-7160 (1973) Model 4
 - Ames Low Boom Wing Tail with 4 Nacelles
 - NASA CP-1999-209699 (1999) LBWT-4

Axi-Symmetric Body Geometries

- Octave (MATLAB) script to convert r(x) to a triangulation of a body of revolution
 - Uniform circumfrential spacing (2-4 degrees)
 - Equally distribute slope errors or aspect ratio
 - 75 thousand triangles (25 thousand for Cone-Cylinder)
- Cylindrical sting (3 body lengths) closed with aft pointing cone (1 body length)

Axi-Symmetric Bodies

- Longest propagation distances (10 body length)
 - Ensure sufficient iterative convergence
- Quartic Body has a significant shock stand-off distance required a less aggressive CFL schedule for initial transients during impulsive start

6.48 Degree Cone Cylinder, 1.68 Mach, h/l=10

6.48 Degree Cone Cylinder, 1.68 Mach, h/I=10

Pressure Integral

6.48 Degree Cone Cylinder, 1.68 Mach, h/l=10

Designer Trades Accuracy for Resources

69 Degree Delta Wing Body, 1.68 Mach, 0.15 C_N

• Vortex and circumferential geometry discontinuties

69 Degree Delta Wing Body, 1.68 Mach, 0.15 C_N 0.04 0.03 0.02 0.01 dp/p_{inf} 0 -0.01 Adptation History -0.02 Final Wind Tunnel 0 -0.03 -0.2 0.2 0.8 1.2 $0.4 \, h/$ 0 0.6

69 Degree Delta Wing Body 1.68 Mach 0.15 C_N

- LBWT has aft-facing surface normal modeled with a transpiration boundary condition to prevent unphysical expansion
- Unintended geometry discontinuities are resolved

• Tail, fuselage, and sting have complex shock-shock interaction with wings and nacelles

• Adaptation aligns grid to complex shock-shock interaction topologies

Simulation Inputs

- Surface triangulation to resolve geometry
- Dimensions of background grid
- Position of sensor surface
- Mach and angle of attack
- CFL number schedule
- Iterative convergence criteria (max residual reduction or iteration)
- Number of processors

Case Statistics

Case	Total time	Adaptations	Final flow solve	Final size
6.48 Cone- Cylinder	12 hr	18	74 min	7.1 million CV
Parabolic BoR	14 hr	22	38 min	1.5 million CV
Quartic BoR	14 hr	27	31 min	1.1 million CV
69 Degree Delta Wing	12 hr	21	90 min	6.7 million CV
LBWT	12 hr	19	30 min	6.9 million CV

Summary

- Adjoint provides output sensitivities
 - Automated output-based adaptation
 - Enables design
- Robust output adaptation cut-cell approach predicts wind tunnel measurements
 - Tetrahedral background grids
 - Automated after geometry surface triangulation
 - No a priori shock knowledge used for initial grid generation
 - Five cases performed in 2 work days
 - Iterative convergence is important for long propagation distances, complicated by detached bow shocks
- More info: http://fun3d.larc.nasa.gov