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Euler Unstructured Methods Studied

• AIRPLANE
– Tetrahedral body-fitted volume grid
– Smooth gradation from dense surface to outer boundaries
– No specific orientation of volume cells
– Refinement occurs after initial volume mesh is generated

• CART3D
– Cartesian non body-fitted volume grid
– 2 to 1 (minimum) gradation from dense surface to outer 

boundaries
– Volume cells oriented vertical/horizontal regardless of model 

angle of attack
– Refinement occurs during volume mesh generation
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• Develop efficient and accurate sonic boom analysis method
– Suitable for aerodynamic shape optimization

• Computational grids of reasonable size
– Refinement level and zone boundaries non-changing during design

• Improved gradient information
• Sufficiently dense to permit vehicle changes without loss of accuracy

• Characterization of grids established on series of known shapes with 
experimental data
– Edge length as a function of vehicle length evaluated on several vehicle 

types
• Characterized by sampling the volume grid at cutting planes 

– symmetry plane
– X/L of ½,1,and 3/2.

– Provides guidelines for alternative vehicle shapes with unknown boom 
levels

Assessment Study Goals & Grid Characterization
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Benefits of EASS Grid Refinement

• Refines in zone of influence for sonic boom 
computations
– Swept at Mach angle
– Annular (donut) shape allows for 

refinement some distance from surface
– Refinement nesting (multiple refinements 

in coarse regions)
– Elliptical shape for winged configurations 
– Circular shape for cylindrical 

components
– Simple to evaluate 3D effects (ϕ −

 

off 
track angle) 
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Sonic Boom Prediction Technique
• Utilize EASS Refinement Regions

– AIRPLANE: Tetrahedra edge split after grid generation
– CART3D: Cartesian grid generated with uniform refinement of 

square cells during grid generation
• Refine grid until little or no variation in signature

– Correlation with experiment is suitable for design
– Add refinement regions for minimal variation in cell size 

(AIRPLANE)
• Extrapolate using NFBOOM (ANET) from 0.4 body lengths to the 

experimental distance
– Reduces grid size for design with optimization
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Cone Cylinder: AIRPLANE EASS Refinement

X= 4.3 (L/2) X= 8.6 (L) X=12.9 (3L/2)

Z = 0
Symmetry Plane
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Cone Cylinder: CART3D EASS Refinement
Symmetry Plane for Refinement Level 10 

EASS refinement region prescribed via 
many small rectangular shaped regions 
inside the expected zone of influence of the 
solutions 
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AIRPLANE CART3D

x cut @ x=L

Cells colored by average edge length divided by body length
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Quartic Body of Revolution-Cylinder 
Mach 1.41, AoA = 0.0
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AIRPLANE CART3D

Cells colored by average edge length divided by body length

x cut @ x=L x cut @ x=L

isometric below

front port side

below isometric

front port side

0.100 0.100

0.081

0.061

0.042

0.022

0.003 0.003

0.022

0.042

0.061

0.081

Avg E/L Avg E/L

y/l = 0.4 y/l = 0.4



www.nasa.gov

National Aeronautics and Space Administration

69o Delta Wing Body
Mach 1.68, CL = 0.15

Ramp Effect

12 deg ramp

Experimental data from ARC 9x7
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CART3D Domain Rotation Study
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Grid Rotation Formula:

θ=90º- δ+ α - arcsin(1/M∞)

Characteristic angle: μ=arcsin(1/M∞)

Aircraft rotation angle: θ

Grid offset angle: δ

Angle of attack: α

Legend

Align Mach angle with grid by
vehicle rotation

Pressure signature extraction lines
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Level 8
587,187 pts

Level 6
227,359 pts

Level 10
15,840,699 pts

CART3D Domain Rotation Study

Refinement requirement nearly
equivalent to no refinement
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Rotation Results & Grid Refinement Study
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AIRPLANE Automatic Cell Refinement 
Based on Edge Length

X=8.76

X=17.52

X=26.28

Simplifies the process of defining 
EASS refinement regions

Only necessary to provide a single 
refinement region
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Signature Extraction Distance Study with 
CART3D Domain Rotation
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removable
tail slot

balance cavity gap

Low Boom Wing Tail (LBWT) 4 Nacelle
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LBWT 4 Nacelle Results using New Techniques
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Current Endeavors 
Reduce Refinement to One Direction in Outer Flowfield

• AIRPLANE: 
– Swept prismatic cylindrical grid

– Tetrahedral grid stretching
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Concluding Remarks

• EASS refinement offers a simple method for 
refinement

• Domain rotation reduces the grid requirements 
• Extrapolating from 0.4 body lengths works well 

and is adequate for design
• AIRPLANE becomes inefficient and dissipative 

for h/l’s greater than 0.8 without grid alignment 
and stretching

• More Information in NASA TM-2008-21568
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