

Introduction and Case Descriptions for the Sonic Boom Prediction Workshop

Susan Cliff Fundamental Aeronautics 2008 Annual Meeting Atlanta, GA October 8, 2008

Sonic Boom Analysis

Validation Geometry Selection (experimental models)

- 6.48 degree Cone-Cylinder
 - Finite rise pressure signature
- Parabolic body of revolution
 - Representative of a typical transport vehicle fuselage
- Quartic body of revolution
 - Large bow shock simulation and low boom shape
- 69 degree swept Delta-Wing-Body
 - Simple lifting configuration
- Ames Low Boom Wing-Body-Tail with nacelles and B.L. diverters (LBWT)
 - Representative of low sonic boom complete configuration

Delta Wing Fuselage

Low Boom Wing Tail

Experimental Validation Cases

Configuration	Mach	AoA	h/l	Report no.
6.48° Cone-Cylinder; L=8.6 units	1.68	0.0	10.0	NASA TM X-2219
Parabolic Body of Revolution; r=f(x**0.5); L=2.0 units	1.41	0.0	10.0	NASA TN D-3106
Quartic Body of Revolution; r=f(x**0.25); L=2.0 units	1.41	0.0	10.0	NASA TN D-3106
69° Swept Delta-Wing-Body; L=17.52 units	1.68	4.74	3.6	NASA TN D-7160
Ames Low Boom Wing-Body- Tail (LBWT) with 4 nacelles, L=12.0	2.0	2.0	1.167	NASA CP-1999- 209699

Computational Study of Near Field Signatures For the 69° Swept Delta-Wing Body

Experimental Data

- NASA Ames 9x7 Unitary Plan Wind Tunnel (UPWT)
 - Cone-Cylinder
 - 69° Swept Delta-Wing-Body
 - Ames Low Boom Wing-Body-Tail (LBWT)
- NASA Langley 4x4 UPWT
 - Parabolic Body of Revolution
 - Quartic Body of Revolution

The Experimental Setup in 9x7 UPWT

The Experimental Setup in 4x4 UPWT model traverse strut AoA mech on-track probe blade sting 10 00 00 U Quiet Spike reference probe floor / nozzle block

Experimental and Computational Considerations

Wind Tunnel	CFD		
CN may vary by 10-20% due to sting/ram deflection ($^{\alpha}$ variation on large lifting models) and stream angle	Alpha and CN are constant		
Flow is unsteady in Tunnel (model vibrates with turbulence)	Flow is steady / model is steady		
Tunnel conditions (temperature and humidity) change during signature taking (~30 – 60 mins)	No change in flow conditions		
Reference probe in different location than overpressure probes	Pinf is computed		
Viscosity effects captured B.L not tripped	No viscous effects for Euler computations		
Model base/sting cavity on lifting models has proper physics	Model base/sting geometries as solid ramps or steps		
Geometry as built	Geometry as designed		

Differences in computational and experimental data are expected

Computational Methods Assessed

AIRPLANE - Euler tetrahedral cells

- CART3D Euler Cartesian cells
- FUN3D Navier-Stokes (Euler mode) tetrahedral cells
- USM3D Navier-Stokes (Euler mode) tetrahedral cells

- 8:00 8:15 Introduction and Case Descriptions for the Sonic Boom Prediction Workshop - Ms. Susan Cliff, NASA-Ames
- 8:15 9:00 Assessment of Unstructured Euler Methods for Sonic Boom Pressure Signatures Using Grid Refinement and Domain Rotation Methods - Ms. Susan Cliff, Mr. Scott Thomas, Mr. Matt McMullen, Mr. John Melton and Mr. Don Durston, NASA-Ames
- 9:00 9:30 Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction - Dr. Michael Park and Dr. Eric Nielsen, NASA-Langley
- 9:30 10:00 Sonic-Boom Prediction with Output-Based Adaptation and Cart3D Mr. Michael Aftosmis, Mr. Marian Nemec, Mr. Mathias Wintzer, NASA ARC
- 10:00 10:30 BREAK
- 10:30 11:00 A Method for Shearing and Stretching Unstructured Grids for Improved Sonic Boom Prediction - Mr. Richard Campbell and Ms. Melissa Carter, NASA LaRC
- 11:00 11:30 Summary and Comparison of NASA's Supersonic Boom Prediction Methods - Ms. Melissa Carter, NASA LaRC