

Summary and Comparison of NASA's Supersonic Boom Prediction Methods

Melissa Carter Boom Workshop Fundamental Aeronautics 2008 Annual Meeting Atlanta, GA Oct 8, 2008

AIRPLANE

Presentation Outline

- Comparison of Computational Results with Experimental Data
- Comparison of Computational Results from Delta Wing Body Distance Study
- Time to Obtain CFD Results Comparison

Configurations Studied

- Bodies of Revolution
 - Cone-Cylinder
 - Parabolic
 - Quartic
- 69-degree Swept
 Delta-Wing-Body
- Ames Low Boom Wing Tail (LBWT) with 4 Nacelles

Cone-Cylinder - 10 Body Lengths Below

Parabolic Body of Revolution - 10 BL

Quartic Body of Revolution - 10 BL

Ames Low Boom Wing Tail (LBWT) with 4 Nacelles - 1.167 BL

Ames Low Boom Wing Tail (LBWT) with 4 Nacelles - 1.167 BL

Near Field Study

- Study conducted using Delta Wing Body
- Study included cuts at 0.2, 0.4, 0.8, 1.2, 2.0 and 2.8 body lengths below the model
- No experimental data available for comparison
- No extrapolation (AIRPLANE & CART3D)

69-degree Swept Delta-Wing-Body - 1.2 BL 💐

69-degree Swept Delta-Wing-Body - 2.0 BL

NASA

Time to Obtain Data

- Data Includes Only Computer Time
 - Time to Create Grid
 - Time to Get Computational Solution
- All of the methods used different computers!!!

	CART3D w/Adjoint	FUN3D w/Adjoint	AIRPLANE	CART3D	USM3D w/SSGRID
Grid Gen	8 core Intel Xeon (3.2 Ghz, 16gb of memory)	1 3.6 Ghz Pentium 4 2gb memory	1 processor on Columbia (1.5 Ghz Sgi Altix)	1 processor on Columbia (1.5 Ghz Sgi Altix)	1 core Intel Xeon Mac Pro (3 Ghz w/16gb of memory)
Solution	8 core Intel Xeon (3.2 Ghz, 16gb of memory)	24 3.6 Ghz Pentium 4 2gb of memory each	64 processors on Columbia (1.5 Ghz Sgi Altix)	64 processors on Columbia (1.5 Ghz Sgi Altix)	48 processors on Columiba (1.5 Ghz Sgi Altix)

Cone-Cylinder Timings

Cone-Cylinder Timings

Parabolic Body of Revolution

WWW.Nasa.gov 21

Quartic Body of Revolution

69-degree Swept Delta-Wing-Body

Ames Low Boom Wing Tail (LBWT) with 4 Nacelles

WWW.Nasa.gov 24

Summary

- Have signatures with a single shock, multiple shocks, wide variety of shapes and signatures
- Any one of the codes can produce reasonable results in hours
- Accuracy of the codes have improved
- Automation has improved

Future Work:

- LBWT is being retested to obtain better fidelity data
- Low boom aft-end models
- How far do we need to go to use propagation to ground?