

Improved Unstructured Grids for Sonic Boom Prediction

Richard L. Campbell Fundamental Aeronautics 2008 Annual Meeting

Team Members

- Melissa B. Carter
- Karen A. Deere
- Gregory E. Duckett
- Richard L. Campbell

Presentation Outline

- Background
- Methods
- Results
- Concluding remarks

Background

- Significant recent interest in supersonic overland flight
- Key aerodynamic challenges:
 - low boom for supersonic flight over land
 - low drag for reduced fuel-burn and emissions
- Accurate CFD analysis and design methods are needed to help address these challenges
 - drag prediction capability fairly well established
 - sonic boom prediction less mature, especially with unstructured grids
- Current practice for boom prediction:
 - use CFD to compute signature in mid-field (~3-10 body lengths)
 - extrapolate signature to ground using propagation code
- Key requirements for accurate CFD mid-field signature
 - sufficient grid density to resolve shock
 - aligning the field grid with shocks & expansions
 - stretching field grid along Mach lines to reduce dissipation

Some Current CFD Gridding Approaches for Sonic Boom Prediction

• <u>Structured grid</u>:

+ good control of mid-field grid alignment & spacing (A&S)
- multiple blocks needed in near-field for complex configurations

- Unstructured grid:
 - + simpler grid generation for complex configurations

- weak control over mid-field grid A&S, can lead to excessive dissipation in flow solution

- <u>Hybrid (unstructured near-field, structured mid-field)</u>:
 + easy near-field grid generation & good mid-field grid A&S
 requires multiple grids and flow solvers + interpolation
- <u>Unstructured grid with run-time adaptation</u>:
 - + easy near-field grid generation & good mid-field grid A&S
 - requires multiple runs of analysis and refinement codes (and adjoint solver), grids can get large if refinement is used

Methods

- TetrUSS unstructured grid software system used
- Geometry Setup GRIDTOOL
 - develop surface patching from IGES or other geometry definition
 - define outer boundary patches
- Grid Sourcing AUTOSRC
 - automatically locates and set sizes for sources that control surface and field grid spacing
- Grid Generation VGRID
 - generates body-fitted tetrahedral mesh using advancing layers and advancing front methods
 - new volume source capability used to control field grid spacing below configuration (see AIAA-2008-7178)
- Grid Modification SSGRID
 - shears and stretches grid for improved sonic boom prediction
- Flow Solver USM3D
 - cell-centered RANS flow solver, Roe flux-difference scheme
 - all cases run in inviscid mode
 - limiters available for solution stability

Geometry Setup - GRIDTOOL

- Develop water-tight surface patches from IGES definition of geometry, including sting
- Add compact outer boundary box

National Aeronautics and Space Administration

Grid Sourcing - AUTOSRC

Grid Modification - SSGRID

- Grid alignment approximated by *a priori* axial shearing of grid based on free-stream Mach number and configuration angle of attack
- Grid stretching reduces grid size and signature dissipation to reach mid-field
- Inner cylinder region with no grid modifications prevents sheared & stretched grid from intersecting configuration
- Variable inner cylinder radius based on keel line allows grid modification to begin close to body
- Grids for different Mach number/angle-of-attack combinations can be quickly (~ 1 minute) developed from baseline grid

- Radial stretching based on distance between inner cylinder and outer boundary
- Stretching increased as r^{0.25} for smooth cell size transition away from inner cylinder

National Aeronautics and Space Administration

Grid Modification - SSGRID

www.nasa.gov 10

National Aeronautics and Space Administration

Configurations for Validation

Quartic Body of Revolution (NASA TN D-3106, Model 5)

69° Swept Delta-Wing-Body (NASA TN D-7160)

Ames Low Boom Wing Tail with Nacelles (NASA CP-1999-209699, LBWT)

Results of Flow Solver Limiter Study

6.48° Cone-cylinder, fine grid M_{∞}= 1.68 α = 0.0° h/L = 10

Delta wing-fuselage, coarse grid M_{∞} = 1.68 α = 4.74° h/L = 3.6

Use limiter only if needed for solution stability

SSGRID Results For 6.48° Cone-cylinder

Case	# Cells(M)	Timing (minutes)		
		Grid	Run	Total
Coarse	2.0	6	8	14
Medium	3.6	10	14	24
Fine	9.7	23	40	63

SSGRID Results For Parabolic Body (Model 4)

Case	# Cells(M)	Timing (minutes)		
		Grid	Run	Total
Coarse	1.9	5	10	15
Medium	3.5	9	19	28
Fine	9.8	24	54	78

$$M_{\infty} = 1.41$$
 $\alpha = 0.0^{\circ}$ $h/L = 10$

SSGRID Results For Quartic Body (Model 5)

Case	# Cells(M)	Timing (minutes)		
		Grid	Run	Total
Coarse	1.8	5	10	15
Medium	3.4	9	18	27
Fine	9.5	24	53	77

$$M_{\infty} = 1.41$$
 $\alpha = 0.0^{\circ}$ h/L = 10

SSGRID Results For 69° Swept Delta-wing-body

Case	# Cells(M)	Timing (minutes)		
		Grid	Run	Total
Coarse	2.7	9	18	27
Medium	4.3	13	32	45
Fine	10.5	29	98	127

$$M_{\infty}$$
= 1.68 α = 4.74° h/L = 3.6

SSGRID Results For LBWT

Case	# Cells(M)	Timing (minutes)		
		Grid	Run	Total
Coarse	4.2	15	32	47
Medium	7.1	24	54	78
Fine	15.9	50	127	177

 M_{∞} = 2.0 α = 2.0° h/L = 1.167

NASA

Final Comparison of CFD and Wind Tunnel Results

Concluding Remarks

- Mid-field boom signatures obtained using the fine grid option in AUTOSRC correlate well with wind tunnel data
- Grid size studies indicate that coarser grids can give up to 5x reduction in case time with little loss of accuracy
- SSGRID can quickly (~1 minute) modify a baseline grid for analysis at other Mach numbers or angles of attack
- SSGRID provides an efficient method for developing unstructured grids for accurate prediction of sonic boom signature at mid-field distances