

Fundamental Aeronautics Program Annual Meeting Sonic Boom Prediction Workshop

Sonic-Boom Prediction with Output-Based Adaptation and Cart3D

Michael Aftosmis, Code TNA, NASA Ames Marian Nemec, ELORET Corp. Mathias Wintzer, Stanford University

7-9 Oct. 2008

Problem Description

- Objective is ground signal
- Basic approach:
 - Compute accurate pressures in the "near-field"
 - Propagate to ground using atmospheric propagation code
- Fundamental difficulty
 - Can be expensive due to long propagation distances

Approach

- Use adjoint-based mesh adaptation with Cart3D
- Drive adaptation with signal at off-body sensor in near/mid field
- Make every attempt to minimize expense of computation

Outline

- Method & Development history
- Basics of method
 - Generic example
 - Specialization for boom
- Workshop Examples
 - Results & comparisons
 - Cell-counts
 - Timings

Cart3D: Overview

Cut-Cell Cartesian Method

- Fully-automated mesh generation from watertight geometry
- Unstructured Cartesian cells
- Insensitive to geometric complexity
- Multigrid accelerated upwind scheme

Highly Scaleable

- Domain decomposition
- "On-the-fly" mesh partitioning w/ SFC-based partitioner
- OpenMP and MPI builds
- Excellent scalability on Columbia, Pleiades and RTJones

Cart3D: Mesh Adaptation

- Basic adaptation infrastructure for Cart3D developed in 2001-'02
- Adjoint approach involves solution of flow eqs. & corresponding adjoint eqs.
- <image>

- Main Benefits:
 - Efficiency: Focus only on discretization error which impacts performance (functional)
 - Credibility: Every simulation includes:
 - 1. Mesh refinement study to demonstrate mesh convergence
 - 2. Adjoint correction term to functional
 - 3. Bound on remaining error in discrete solution
 - Goal is a user independent predictive tool!
 - Remove dependence on "expert knowledge" to generate good mesh
 - Even "expert" learns from final mesh
 - Remove user bias that even expert brings to meshing

Cart3D: Adjoint Development

Boom Prediction:

AIAA 2008-6593, "Adjoint-Based Adaptive Mesh Refinement for Sonic-Boom Prediction," Wintzer, Nemec & Aftosmis

Adjoint-Based Adaptation:

- AIAA 2008-0725, "Adjoint-based adaptive mesh refinement for complex geometries," Nemec & Aftosmis
- AIAA 2007-4187, "Adjoint error estimation and adaptive refinement for embeddedboundary Cartesian meshes", Nemec & Aftosmis

Adjoint Method for Cut-cell Cartesian Meshes

- *ICCFD 4*, "Adjoint sensitivity computations for an embedded-boundary Cartesian mesh method and CAD geometry," Nemec & Aftosmis. Ghent, 2006
- AIAA 2005-4987, "Adjoint algorithm for CAD-based optimization using a Cartesian method," Nemec & Aftosmis

- NACA 0012 airfoil
 - ► $M_{\infty} = 0.8$,
 - ▶ α = 1.25°
- Functional: C_D
- TOL: 4 counts

NASA

Method Example

- 1. Compute flow solution
- 2. Compute adjoint solution
- 3. Compute adjoint correction
- 4. Compute cell-wise error *e*_{*k*}

Net error:
$$E = \sum_{k=0}^{N} e_k$$

- 1. Compute flow solution
- 2. Compute adjoint solution
- 3. Compute adjoint correction
- 4. Compute cell-wise error *e*_{*k*}

Net error:
$$E = \sum_{k=0}^{N} e_k$$

5. Refine mesh where cell-wise error exceeds threshold

- 1. Compute flow solution
- 2. Compute adjoint solution
- 3. Compute adjoint correction
- 4. Compute cell-wise error *e*_{*k*}

Net error:
$$E = \sum_{k=0}^{N} e_k$$

5. Refine mesh where cell-wiseerror exceeds threshold

6. If (E < TOL) Stop

- Re-examine simulation setup
- Signals propagating from body are measured along near-field sensor
- "Squared functional" used for sensor

$$J_s = \int_0^L \left(\frac{\Delta p}{p_\infty}\right)^2 ds$$

- Introduced in AIAA-2008-0725
- Emphasizes peaks
- Vanishing derivative near $\Delta p = 0$

- Traditional problem layout
 - Cartesian-aligned edges
 - Cubic (isotropic) cells

• To enhance signal propagation towards the sensor:

Rotate mesh by Machangle, µ

$$\mu = \sin^{-1} \left(\frac{1}{M_{\infty}} \right)$$

• To enhance signal propagation towards the sensor:

Rotate mesh by Machangle, µ

$$\mu = \sin^{-1} \left(\frac{1}{M_{\infty}} \right)$$

AIAA 2008-0725

• To enhance signal propagation towards the sensor:

Rotate mesh by Machangle, µ

$$\mu = \sin^{-1} \left(\frac{1}{M_{\infty}} \right)$$

 Stretch cells to increase per-cell propagation distance

AIAA 2008-0725

 To enhance signal propagation towards the sensor:

> Rotate mesh by Machangle, µ

$$\mu = \sin^{-1} \left(\frac{1}{M_{\infty}} \right)$$

Stretch cells to increase
per-cell propagation
distance
Rotation & stretching give substantial savings, see
Full investigations in AIAA 2008-0725 & 2008-6593

μ

Towards

sensor

Results Overview

- Axisymmetric bodies
 - ▶ 6.48° Cone-cylinder
 - Parabolic
 - Quartic

• 69° Swept Delta-wing-body

 Ames Low Boom Wing Tail with Nacelles

Results Overview

- Axisymmetric bodies
 - ▶ 6.48° Cone-cylinder
 - Parabolic
 - Quartic

All cases run "hands-off" starting from: surface triangulation, mesh bounding box & error tolerance

69° Swept Delta-wing-body

 Ames Low Boom Wing Tail with Nacelles

- NASA TM X-2219
 - ► *M*_∞ = 1.68
 - $\alpha = 0.0^{\circ}$
 - Sensor offset, h/L = 10.0
- Initial mesh ~ 6300 cells

- NASA TM X-2219
 - ► *M*_∞ = 1.68
 - $\alpha = 0.0^{\circ}$
 - Sensor offset, h/L = 10.0
- Initial mesh ~ 6300 cells

- NASA TM X-2219
 - ► $M_{\infty} = 1.68$
 - $\alpha = 0.0^{\circ}$

• NASA TM X-2219

•
$$M_{\infty} = 1.68, \alpha = 0.0^{\circ}, h/L = 10.0^{\circ}$$

- NASA TM X-2219
 - $M_{\infty} = 1.68, \alpha = 0.0^{\circ}, h/L = 10.0$
- Simulation performed on desktop workstation
 - Dual quad-core (8 cores)
 - Intel Xeon, 3.2Ghz
 - 16 Gb memory
- Total simulation time 41 mins. (all adaptations & mesh gen)

Total = 41 mins.

- NASA TN D-3106
 - ► $M_{\infty} = 1.41$

- $\alpha = 0.0^{\circ}$
- Sensor offset, h/L = 10.0
- Initial mesh ~3200 cells

- $M_{\infty} = 1.41$
- $\alpha = 0.0^{\circ}$
- Sensor offset, h/L = 10.0
- Initial mesh ~3200 cells

- NASA TN D-3106
 - ► $M_{\infty} = 1.41$
 - ▶ $\alpha = 0.0^{\circ}$
 - Sensor offset, h/L = 10.0
- Initial mesh ~3200 cells

Parabolic: $r = f(x^{1/2})$

• NASA TN D-3106

•
$$M_{\infty} = 1.41$$

► $\alpha = 0.0^{\circ}$

L = 2.0

Parabolic: $r = f(x^{1/2})$

- NASA TN D-3106
 - $M_{\infty} = 1.41$
 - ► $\alpha = 0.0^{\circ}$

L = 2.0

Parabolic: $r = f(x^{1/2})$

- NASA TN D-3106
 - $M_{\infty} = 1.41$
 - ► $\alpha = 0.0^{\circ}$

- NASA TN D-3106
 - $M_{\infty} = 1.41, \, \alpha = 0.0^{\circ}$
 - ▶ h/L = 10.0
- Simulation performed on desktop workstation
 - Dual quad-core (8 cores)
 - Intel Xeon, 3.2Ghz
 - 16 Gb memory
- Total simulation time 75 mins. (all adaptations & mesh gen)

Total = 75 mins.

- NASA TN D-3106
 - ► *M*_∞ = 1.41

- $\alpha = 0.0^{\circ}$
- Sensor offset, h/L = 10.0
- Initial mesh ~ 3200 cells

- NASA TN D-3106
 - ► $M_{\infty} = 1.41$
 - ▶ $\alpha = 0.0^{\circ}$
 - Sensor offset, h/L = 10.0
- Initial mesh ~ 3200 cells

- NASA TN D-3106
 - ► $M_{\infty} = 1.41$
 - ▶ $\alpha = 0.0^{\circ}$
 - Sensor offset, h/L = 10.0
- Initial mesh ~ 3200 cells

• NASA TN D-3106

$$\bullet M_{\infty} = 1.41$$

• $\alpha = 0.0^{\circ}$

L = 2.0 —

- NASA TN D-3106
 - ► $M_{\infty} = 1.41$
 - ► $\alpha = 0.0^{\circ}$

L = 2.0 —

- NASA TN D-3106
 - $M_{\infty} = 1.41$
 - ► $\alpha = 0.0^{\circ}$

- NASA TN D-3106
 - $M_{\infty} = 1.41, \, \alpha = 0.0^{\circ}$
 - ▶ h/L = 10.0
- Simulation performed on desktop workstation
 - Dual quad-core (8 cores)
 - Intel Xeon, 3.2Ghz
 - 16 Gb memory
- Total simulation time 83 mins. (all adaptations & mesh gen)

Total = 83 mins.

- Sensor offset, h/L = 3.6 & {0.2, 0.4, 0.8, 1.2, 2.0, 2.8}
- Initial mesh ~ 22 k cells

69° Swept Delta Wing-Body

- NASA TN D-7160
 - $M_{\infty} = 1.68$
 - ► $\alpha = 4.74^{\circ}$
 - Sensor offset, h/L = 3.6 & {0.2, 0.4, 0.8, 1.2, 2.0, 2.8}
- Initial mesh ~ 22 k cells

L = 17.52

69° Swept Delta Wing-Body

- NASA TN D-7160
 - $M_{\infty} = 1.68$
 - ▶ $\alpha = 4.74^{\circ}$
 - ▶ $h/L = \{.2, .4, .8, 1.2, 2.0, 2.8, 3.6\}$
- Simulation performed on desktop workstation
 - Dual quad-core (8 cores)
 - Intel Xeon, 3.2Ghz
 - 16 Gb memory
- Total simulation time 53 mins. (all adaptations & mesh gen)

Total = 53 mins.

- NASA CP-1999-209699
 - ► *M*_∞ = 2.0
 - ▶ α = 2.0°
 - Sensor offset, h/L = 1.167
- Initial mesh ~ 111 k cells

- NASA CP-1999-209699
 - ► *M*_∞ = 2.0
 - $\rightarrow \alpha = 2.0^{\circ}$
 - Sensor offset, h/L = 1.167
- Initial mesh ~ 111 k cells

- NASA CP-1999-209699
 - ► *M*_∞ = 2.0
 - $\rightarrow \alpha = 2.0^{\circ}$
 - Sensor offset, h/L = 1.167
- Initial mesh ~ 111 k cells

- NASA CP-1999-209699
 - $M_{\infty} = 2.0$
 - $\bullet \alpha = 2.0^{\circ}$

- NASA CP-1999-209699
 - $M_{\infty} = 2.0$
 - $\alpha = 2.0^{\circ}$

- NASA CP-1999-209699
 - $M_{\infty} = 2.0$
 - $\bullet \alpha = 2.0^{\circ}$
 - Sensor offset, h/L = 1.167
- Simulation performed on desktop workstation
 - Dual quad-core (8 cores)
 - Intel Xeon, 3.2Ghz
 - 16 Gb memory
- Total simulation time 90 mins. (all adaptations & mesh gen)

Mesh Sizes and Computing Resources

Configuration	Mach	AoA	h/L	Num. Control Volumes (on final mesh)	Net wallclock time (mins) ²	Net CPU time (mins)
6.48° Cone-Cylinder NASA TM X-2219	1.68	0°	10	3.29 x 10 ⁶	41 mins	328 mins
Parabolic Body of Revolution NASA TN D-3106	1.41	0°	10	3.58 x 10 ⁶	75 mins	600 mins
Quartic Body of Revolution NASA TN D-3106	1.41	0°	10	3.98 x 10 ⁶	83 mins	664 mins
69° Swept Delta Wing- Body NASA TN D-7160	1.68	4.74°	3.6 ¹	2.26 x 10 ⁶	53 mins	424 mins
Ames Low Boom Wing Tail with Nacelles NASA CP-1999-209699	2.0	2.0°	1.167	7.20 x 10 ⁶	90 mins	720 mins

¹ Delta wing body results at $h/L = \{0.2, 0.4, 0.8, 1.2, 2.0, 2.8, 3.6\}$, experimental data at h/L = 3.6 only

² All simulations on desktop workstation with dual quad-core (8 cores) Xeon processors, 16Gb memory

Summary and Future work

- Basic approach seems sound
 - Very good agreement with experiment for variety of geometry and conditions.
 - Robust and automatic, all cases same CFL, same limiter.
 - Reasonable turnaround time on commodity hardware.
 - ▶ 1-2 hrs on 8 cores for all workshop problems
 - Very economical! Workshop examples required from 2.3-7.2 M cells
 - Longer propagation distances and complex geometry easily within reach
- Best objective function?
 - Won't know until we start propagating signals to ground. Even then...
 - What are most important properties of near field signal?
 - What are acceptable boom profiles? dBA? Hardest on buildings?
- No issues outstanding before refocusing on propagation and shape design

Questions?